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1. Introduction and summary

Though the recipe for building the string theory of QCD and hadrons is still a mystery, it

should certainly include the ingredients of confinement and flavour chiral symmetry and its

spontaneous breakdown. Whereas the realization of the former is easy, the incorporation

of the latter is not and is shared only by very few models.

Holographic models are based on taking the near horizon limit of the background

produced by large Nc branes. Adding Nf additional branes, introduces strings stretch-

ing between the two type of branes that transform in the fundamental representation of

U(Nc)×UL(Nf). Thus, for Nf ≪ Nc, when the back-reaction of the additional branes on the

background can be neglected, placing a stack of Nf D-branes in a holographic background

associates with adding fundamental quarks in the dual gauge theory. Putting now an addi-

tional stack of Nf anti D-branes results in anti -quarks that transform in the fundamental

representation of another UR(Nf) symmetry which is a gauge symmetry on the new stack

of branes. In such a setup the dual gauge theory enjoys the full U(Nf)L × U(Nf)R flavour

symmetry. However, if the branes and the anti-branes smoothly merge at some point into

a single configuration then only a single U(N)D factor survives. If one can attribute the

region where the two separate symmetry groups reside to the UV regime of the dual field

theory and where they merge to the IR , then one achieves a “geometrical mechanism” in

the gravity model dual of the gauge theory chiral symmetry breakdown.

Such a scenario was derived by adding D7 and anti- D7 branes to the confining

Klebanov-Strassler background (KS) [1] model in [2]. Holomorphic embeddings of D7
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branes into the KS model which is dual to supersymmetric gauge theory without flavour

chiral symmetry breaking were studied in [3, 4] and [5]. The backreaction of the flavour

branes (in the so-called un-quenched approximation) have been further investigated in a

series of papers [6 – 10].

A similar geometrical mechanism was implemented in the Sakai-Sugimoto model [11,

12]. This model incorporates Nf D8 and D̄8 probe branes into Witten’s model [13] which

is based on the near extremal D4-brane background. An analogous non-critical six dimen-

sional flavoured model was written in [14] and [15] using the construction of [16, 17].

Despite its tremendous success the Sakai-Sugimoto model [11] suffers from various

drawbacks which it inherits from Witten’s model [13]. In particular the model is inconsis-

tent in the UV region due to the fact that the string coupling diverges there. In addition

the dual field theory is in fact a five dimensional gauge theory compactified on a circle

rather than a four dimensional gauge theory. A potential way to bypass these problems is

to use as a background the KS model since it is based on D3 branes and its dilaton does not

run. As mentioned above this was the main idea behind [2]. However, the solution found

there for the classical probe profile included an undesired gauge field on the transverse S3.

On the route to deriving novel solutions of the embedding of D7 and anti-D7 branes in

the KS model, the goal of the present paper is to solve for the embedding of these flavour

branes in the context of the un-deformed conifold geometry. The 10d solution based on

this geometry is known as the Klebanov-Witten (KW) background [18].

The summary of the achievements of the paper are the following:

• We write down the DBI action associated with the embedding of D7 branes in the

geometry of AdS5 × T11. We write the corresponding equations of motion associated

with the two angles on the S2 which is transverse to the probe branes. We find an

analytic solution for the classical embedding. In fact it is a family of profiles along

the equator of the S2 which are characterised by the minimal radial extension of the

probe brane r0 and with an asymptotic fixed span of
√

6π/4 for the equatorial angle.

• We introduce a Cartesian-like coordinates that enable us to examine the spectrum of

scalar mesons associated with the fluctuations of the embedding.

• We identify a massless mode that plays the role of the Goldstone boson associated

with the spontaneous breakdown of conformal invariance.

• We compute the spectrum of the massive vector mesons.

• We identify the “pions” associated with the chiral symmetry breaking. They are the

zero modes of the gauge fields along the radial direction.

• We write down the quiver that describes the dual gauge field. We also argue why

our model includes Weyl and not Dirac fermions as required for a model with chiral

symmetry breaking.

• We describe a special case where chiral symmetry is not broken.
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The paper is organised as follows: In section 2 we present the basic setup of the model.

Section 3 is devoted to the derivation of the D7 probe brane profile solution. We start

with a brief review of the conifold geometry. We then write the DBI action and solve

the corresponding equation of motion. The spectrum of mesons is extracted in section 4.

We identify the Goldstone mode associated with the spontaneous breaking of conformal

invariance and the “pions” that follow from the breaking of the flavour chiral symmetry.

We further derive the spectrum of massive vector and scalar mesons. Section 5 is devoted to

the dual field theory. We draw the corresponding quiver diagram and discuss the properties

of the theory. In section 6 we discuss a special model where chiral symmetry is not broken.

2. The basic setup

To understand the basic setup of the D7-branes in the conifold geometry we first review

the setup of the type IIA model of [11]. As was mentioned above it is based on adding

to Witten’s model [13] a stack of Nf D8 branes and a stack of Nf anti-D8 branes. The

D8-branes are 9d objects, which means that there is only one coordinate transversal to

them. Asymptotically this coordinate x4 is actually one of world-volume coordinates of the

original D4 branes. The coordinate is along an S1 compactified direction. The submanifold

of the background along this direction and the radial direction has a “cigar-like” shape.

The radius of the cycle shrinks to zero size at some value of the radial direction u = uΛ

and diverges asymptotically for large u. The profile of the D8 probe branes, which is

determined by the equations of motion deduced from the DBI action, is of a U -shape. It

stretches from x4 = −L/2 at u → ∞ down to x4 = 0 at a minimum value of u = u0 > uΛ

and back to x4 = +L/2 at asymptotic u. This shape is obviously in accordance with the

fact that on the “cigar” geometry there is no way for the D8 branes and the anti D8 to end.

Their only choice is to merge. Slicing the cigar at large u we have two distinct branches

of D8 branes with U(Nf)L gauge field of the left one and UR(Nf) on the right one. This is

the dual picture of the full chiral symmetry at the UV region of the gauge theory. On the

other hand down at the tip of the U -shape there is only a single U(Nf)D gauge symmetry

which stands for the unbroken global symmetry in the dual gauge theory. Thus the gravity

dual of the spontaneous breakdown of chiral symmetry is the U -shape structure of the

probe branes. A given probe brane profile is characterised by L ∼ 1/
√

u0. We mention

this relation to contrast the situation that will be found for the D7 branes on the conifold.

In terms of the dual gauge theory the separation distance L is related to the mass of the

mesons. For configurations with u0 ≫ uΛ one finds that the meson mass behaves like 1/L.

Flavour chiral symmetry restoration occurs in QCD at high temperature at the deconfining

phase of the theory. In the dual gravity model [19 – 21] this phase is described by a distinct

geometry of the background where the cigar-like shape describes the submanifold of the

Euclidean time direction and the radial direction whereas the (x4, u) slice has now a shape

of a cylinder that stretches from some minimal value u = uT to infinity. In this geometry the

two separate stacks of branes have two options: either to merge like in the low temperature

phase or to reach an end separately. The former case translates into a deconfining phase
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Figure 1: The picture shows two possible D7 configurations. In both cases the branes wrap the

S3 and look like two separate points on the S2. The position of this points depends, however, on

the radial coordinate r. In one case (the V -shape) the stacks meet only at the tip of the conifold

(the thick curve), while in the other (the U -shape) they merge already at r0 > 0 (the thin curve).

which chiral symmetry breakdown and the latter corresponds to a deconfined phase with

a restoration of the full flavour chiral symmetry.

Since we deal with the type IIB supergravity we will need instead a pair of D7-branes.

Now the transversal space is two-dimensional and analogously to the Sakai-Sugimoto model

we need a two-sphere to place the branes on. This is indeed the case as the T 1,1 base of

the conifold has an S3 × S2 topology. We now have two different options for the D7-

brane configuration. One possibility is to place the branes at two separate points on the

two-sphere and stretch them to the tip of the conifold, where the two-sphere and the three-

sphere shrink. We will refer to this configuration as a V -shape. Another possibility is a

U -shape configuration with D7-branes smoothly merging into a single stack at some point

r = r0 along the radial direction away from the tip. The two options are depicted on

figure 1.

We claim that the configuration reaching the tip describes the chiral symmetric phase,

while the U -shape configuration ending at r0 corresponds to the broken chiral symmetry.

It looks somewhat perplexing, since instead of a pair of two parallel D7-branes we have

D7-branes that still meet at the tip. Notice, however, that the tip is necessarily a singular

point and so the two branches of the V -shape are “distinguishable” and correspond to two

separate branes. Putting it more bluntly, the tip is a co-dimension six point (both the S2

and the S3 shrink there!), so the right way to analyse the configuration is to consider its

form in the full 10d background. The radial coordinate of the conifold combines then with

the space-time coordinates to build AdS5, which is completely wrapped by the D7-branes.

The branes wrap also the three-sphere. On the two-sphere, on the other hand, for the

V -shape the branes look like two separate fixed point, while the U -shape corresponds to

an arc along the equator. The situation is shown on figure 2.

An important issue related to the position of the brane on the two-sphere is the amount

of supersymmetry preserved by the probe branes. One might think that the two stacks
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Figure 2: The picture shows two different D7-brane profiles on the two-sphere. For the V -shape

configuration (left) the D7-branes are given by two separate fixed points on the S2, while for the

U -shape (right) the position of the two points along the equator depends on r and they are smoothly

connected in the middle of the arc for r = r0.

should be located at the antipodal points, let’s say the north and the south pole. In such a

case the embedding is holomorphic (see section 6) and so the setup preserves some super-

symmetry. This näıve expectation, however, proves to be wrong, since the configuration

with two antipodal points does not solve the equations of motion as we will see in the next

section.

3. The configuration

In this section we solve the equations of motion for the D7-brane deriving the U -shape

discussed above. The solution involves a free parameter r0 which is just the minimal

value of radial coordinate along the profile. As r0 goes to zero we will find the V -shape

configuration. The latter, as we have explained earlier, corresponds actually to a pair of

two separate D7-branes. We start our journey by reviewing the conifold basics (for a more

detailed explanation see [22]).

3.1 Brief review of the conifold geometry

The conifold is a 3d complex subspace inside C
4 defined by a 2×2 matrix W with vanishing

determinant (det W = 0). Since the definition is obviously scaling invariant we can fix the

radial coordinate of the conifold as:

ρ2 = Tr
(
W †W

)
. (3.1)

Here ρ and the more common radial coordinate r are related by:

ρ2 =
25/2

33/2
r3. (3.2)

Because W is singular it necessarily has one left and one right null eigenvectors. This in

turn implies that W can be re-cast in the form:

W = ρuv†, (3.3)
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where the vectors u and v both have length one (u†u = v†v = 1). With these notations

the null eigenvectors are uTǫ and ǫv⋆, where ǫ is the 2 × 2 anti-symmetric tensor. The

representation (3.3) is of course not unique, since W is invariant under:

u → eiϕu, v → eiϕv. (3.4)

This way we arrive at a different, but equivalent, definition of the conifold. It can be defined

as a Kähler quotient of C
4 with the U(1)K gauge charges (1, 1,−1,−1). Denoting the C

4

coordinates by z1, z2, z3 and z4 we easily find that u =
√

ρ(z1, z2)
T and v =

√
ρ(̄z3, z̄4)

T.

Let us now introduce a 2 × 2 matrix X satisfying:

u = Xv. (3.5)

If we also impose an additional constraint saying that X is special and unitary (namely

X ∈ SU(2)), then there is an unique solution for (3.5), given by X = uv† − ǫu⋆vǫ. Since

X is clearly invariant under (3.4) we see that X parameterizes an S3. Furthermore, using

the Hopf map we realize that the U(1)K transformation (3.4) implies that the unit length

vector v alone defines an S2. Starting with X and v we can find u and then W . We get:

W = ρXvv†. (3.6)

We conclude that T 1,1, the base of the conifold (the slice given by ρ = const), is uniquely

parameterized by X and v, so the topology of the base is indeed S3 × S2.

Let us now make contact with the explicit S3 × S2 conifold coordinates used in the

literature [23 – 25]. First, note that vv† is a hermitian matrix with eigenvalues 1 and 0. We

therefore can write:

vv† = V
(

1 0

0 0

)
V†, (3.7)

where V is an SU(2) matrix fixed by v up to the gauge transformation V → Veiϕσ3 . Exactly

like for v the matrix V defines an S2 by virtue of the Hopf map. Second, we set:

V = e
i
2
φσ3e

i
2
θσ2 . (3.8)

It is always possible to bring the matrix V to this form using a gauge transformation. We

are finally in a position to write the conifold metric in the S3 × S2 coordinates:

ds2
(6) = dr2 +

r2

3

(
1

4
(f2

1 + f2
2 ) +

1

3
f2
3 +

(
dθ − 1

2
f2

)2

+

(
sin θdφ − 1

2
f1

)2
)

, (3.9)

where r was introduced in (3.2) and the 1-forms fi are defined as:




f1

f2

f3


 =




0 cos θ − sin θ

1 0 0

0 sin θ cos θ







− sinφ − cos φ 0

− cos φ sinφ 0

0 0 1







w′
1

w′
2

w′
3


 , (3.10)
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where wi’s are the SU(2) left-invariant Maurer-Cartan one forms:1

X†dX =
i

2
σiw

′
i. (3.11)

The two SO(3) matrices in (3.10) reflect the fact that the three-sphere is fibered over the

two-sphere. This fiber is trivial as one can easily verify by properly calculating the Chern

class of the fiber bundle.2

Let us end this section with a remark on the un-deformed conifold symmetries.

First, there is a Z2 symmetry that acts as W → WT. On the gauge theory side the

symmetry replaces the two SU(Nc) gauge groups. This fact becomes obvious if follow-

ing [18] one identifies the Kähler quotient coordinates zi with the bi-fundamental chiral

superfields A1,2 and B1,2:

(z1, z2) = (A1, A2) and (z3, z4) = (B1, B2) . (3.12)

Since under W → WT we have (z1, z2) ↔ (z3, z4), the fields Ai and Bi are also interchanged.

These fields transform in the (Nc, N̄c) and (N̄c,Nc) representations of the SU(Nc)×SU(Nc)

gauge group, and so the Z2 interchanges also the SU(Nc)’s. On the other hand, from (3.3)

and (3.5) we have (u, v) → (v⋆, u⋆) or alternatively (X, v) → (XT, (Xv)⋆) under Z2. This

means that our configuration (figure 1) which will be discussed in details below, certainly

breaks the Z2 symmetry. It follows from the fact that v parameterizes the 2-sphere and

the position of the brane on the S2 depends only on the radial coordinate and not on X,

and so the Z2 transformation of v is not respected by out setup. This conclusion will play

an important rôle in the gauge theory discussion in section 5.

Second, there is an SU(2)1 × SU(2)2 symmetry that acts as W → S1WS†
2, where S1

and S2 are two SU(2) matrices. Under this symmetry the fields Ai and Bi transform

as a doublet of one SU(2)i factor and as a singlet of the other. From (3.6) we see that

(X, v) → (S1XS†
2, S2v) and so our embedding breaks S2, but not S1. This fact is expected,

since the broken Z2 from the previous paragraph interchanges the two SU(2)i symmetries.

If, for instance, we were using u (and not v) to parameterize the two-sphere, then S1 would

be broken instead (and not S2).

3.2 The D7 brane profile

In this paper we will study a D7-brane configuration, which spans the space-time coor-

dinates xµ, the radial direction r and the three-sphere parameterized by the forms fi (or

alternatively wi). The transversal space is given by the two-sphere coordinates θ and φ.

Remarkably, since wi are left-invariant forms, our ansatz preserves one of the SU(2) factors

of the global symmetry of the conifold. Based upon this observation, we will assume that

θ and φ do not depend on the S3 coordinates. Since our profile still breaks one SU(2) this

assumption should be examined more carefully. Upon expanding the action around the

1The S3 matrix T and the S2 matrix S of [23, 24] are related to X and V through T = Xσ3 and

S = σ3Vσ3 = e
i

2
φσ3e−

i

2
θσ2 . The Maurer-Cartan forms determined by T †dT = i

2
σiwi are related to w′

i’s as

follows: w1,2 = −w′
1,2 and w3 = w′

3.
2For what follows it will be useful to note that

P

3

i=1
f2

i =
P

3

i=1
w′2

i and f1 ∧ f2 ∧ f3 = w′
1 ∧ w′

2 ∧ w′
3.
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solution we will find that the contributions of the non-trivial S3 modes appear only at the

second order at the fluctuations.3 We, therefore, can safely assume that along the classical

profile θ and φ depend only on the radial coordinate.

The 10d metric is:

ds2
(10) =

r2

R2
dxµdxµ +

R2

r2
ds2

(6) (3.13)

with the 6d metric given by (3.9) and the AdS5 radius is R4 = 27
4 πgsNcℓ

4
s. Because the KW

background has no fluxes except for the C4 form the Chern-Simons terms do not contribute

and the action consists only of the DBI part:

SDBI = −µ7

∫ √−g8. (3.14)

Substituting θ = θ(r) and φ = φ(r) into the metric we find the following Lagrangian:

L ∝ r3

(
1 +

r2

6

(
θ2
r + sin2 θφ2

r

))1/2

. (3.15)

Here the subscript r stands for the derivatives with respect to r. The Lagrangian is SU(2)

invariant, so we can restrict the motion to the equator of the two-sphere parameterized by

θ and φ. Setting θ = π/2 we easily find the solution of the equation of motion:4

cos

(
4√
6
φ(r)

)
=
(r0

r

)4
. (3.16)

There are two branches of solutions for φ in (3.16) with φ ∈ [−π/2, 0] or φ ∈ [0, π/2].

For r0 = 0 we have two fixed (r-independent) solutions at φ− = −
√

6
8 π and φ+ =

√
6

8 π.

The induced 8d metric in this case is that of AdS5 × S3 as one can verify5 by plugging

dφ = dθ = 0 into (3.9). For non-zero r0 the radial coordinate extends from r = r0 (for

φ = 0) to infinity (where φ(r) approaches one of the asymptotic values φ±). The induced

metric has no AdS5 × S3 structure anymore. As was advertised in the Introduction the

D7-branes do not reside at the antipodal points on the (θ, φ) two-sphere. This is not really

surprising since there is a conic singularity at the tip, so the S2 does not shrink smoothly.

This is in contrast to the low-temperature confining phase of the Sakai-Sugimoto model,

where the x4 circle smoothly shrinks to zero size resembling the cigar geometry. For a

non-orbifolded R
2 plane spanned by the polar coordinates (r, φ) a straight line is given by

cos(φ) = r0/r, where, again, r0 is the minimal distance between the origin and the line.

The equation (3.16) has a similar form, where the 4th power and the 4/
√

6 factor are both

artifacts of the conic singularity of the 6d conifold.

Before closing this section let us notice that (3.16) means that we have a family of

classical solutions with different parameter r0, but with the same boundary values φ+

3Notice that in doing so we have also to include the contributions coming from the variations of the

SO(3) matrices in (3.10). This, however, does not modify the final conclusion.
4There are two initial parameters we have to fix in the solution: one is r0 and the other is the value of

φ at r = r0, which we set to 0.
5 To be more precise the transversal space is S3 only topologically since not all the coefficients of f2

i ’s

in (3.9) are equal. This is rather a “squashed” 3-sphere.
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and φ− at r → ∞. This implies that once we consider a perturbation theory around the

classical profile we should find a massless mode related to the variation of ycl with respect

to r0. Since for r0 > 0 the induced metric has no AdS5 factor, the conformal symmetry

of the dual gauge theory should be broken in this case. The massless mode, therefore, is

just the Nambu-Goldstone boson of the broken conformal invariance. In the next section

we will see that this mode indeed appears in the perturbative expansion.

4. Spectrum of mesons

In this section we will calculate the spectrum of mesons. We will begin with the scalar

mesons coming from the variations of the transversal coordinates and will end up with the

vector mesons related to the expansion in term of the D-brane gauge fields. In both cases

we will ignore the non-trivial three-sphere modes.

We start with an observation that the “polar” coordinates r and φ we used in the profile

equation (3.16) do not provide a convenient parameterization of the embedding. As we have

already seen, for a fixed value of r the equation (3.16) has two solution corresponding to the

two branches of the brane. We therefore cannot use r as an independent coordinate if we

want to distinguish between the branches. Moreover, at r = r0 the derivative ∂rφ(r) blows

up making the expansion around the classical configuration somewhat problematic. On

the other hand, using φ as an independent coordinate we find that the expansion becomes

very complicated and the derivative ∂φr(φ) diverges now at φ = φ±. To summarise, we

need a new set of coordinates which properly describes the two branches of the D7-brane

and also renders the profile (3.16) in a non-singular form.

We found that the following “Cartesian” coordinates do the job:

y = r4 cos

(
4√
6
φ

)
and z = r4 sin

(
4√
6
φ

)
. (4.1)

With the malice of hindsight we have used the same notation as in the original Sakai-

Sugimoto paper [11]. Along the configuration (3.16) the coordinate y remains fixed ycl = r4
0,

while z takes all real values. Furthermore, for positive and negative z we have two different

branches of the brane. The situation thereof is a generalisation of the coordinates used

in [11], where only the ycl = 0 case was studied. From now on we will use z together

with the space-time coordinates xµ and the Maurer-Cartan forms fi to parameterize the

world-volume of the D7-brane. In particular, the induced 8d metric on the brane is:

ds2
(8) =

r2

R2
dxµdxµ + R2

((
z2 + 2r8

0

)

16r16
dz2 −

√
6r4

0

12r8
dzf1 +

1

6

(
f2
1 + f2

2

)
+

f2
3

9

)
, (4.2)

where r = r(z) is given by:

r8 = z2 + r8
0. (4.3)

In the rest of the section we will use the coordinates y and z to compute the scalar and

the vector mesonic spectra.
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4.1 Scalar mesons

Plugging y = ycl + δy(xµ, z) and θ = θcl + δθ(xµ, z) into the DBI action (3.14), expanding

around the classical solution (ycl, θcl) = (r4
0,

π
2 ) and integrating over the three-sphere, we

arrive at the following action for the fluctuation fields δy(xµ, z) and δθ(xµ, z):

δSDBI = −2π2

72
µ7

∫
dxµdz

{
1

2
(∂zδy)2 − R4

32

z2(z2 + 2r8
0)

r26
(∂µδy)2 + (4.4)

+
4

3
r8 (∂zδθ)2 − 1

2

(r0

r

)8
δθ2 − R4

12

z2 + 2r8
0

r10
(∂µδθ)2

}
,

where r is given by (4.3).

Let us start with the δy(xν , z) field. As usual in a meson spectrum calculation we

will assume that ∂µ∂µδy(xν , z) = M2 δy(xν , z), where M is the 4d mass. Introducing a

dimensionless variable x and a parameter λ:

x =
z

r4
0

and λ =
R2M

r0
(4.5)

we obtain the following Schrödinger-like equation:

∂2
x δy +

λ2

8

x2(1 + x2/2)

(1 + x2)13/4
· δy = 0. (4.6)

In order for the expansion in terms of δy to be well-defined the function as well as its

derivatives have to be regular (non-divergent) for any value of x. The function should also

be normalisable at x → 0 and x → ±∞. This immediately implies that λ2 > 0 (and so

M2 > 0), since otherwise the potential in (4.6) is everywhere positive and so there are

no normalisable solutions. Notice also that the potential in (4.6) is even under x → −x.

Thus we expect to find pairs of even and one odd solutions. Indeed, near x = 0 we have

δy ∼ 1 + O(x2) or δy ∼ x + O(x3). On the other hand, for x → ∞ we find that δy ∼ 1

or δy ∼ x. Clearly we have to keep only the former option (the latter solution is also

non-normalisable for the action (4.4)).

Before applying a numerical method to solve (4.6) for M > 0 we would like to point out

that the equation is easily solvable for M = 0. The solutions are δy = 1 and δy = x. The

linear solution is non-normalisable, so we are left only with the first option. This constant

solution is exactly the Nambu-Goldstone boson of the broken conformal symmetry we

have predicted in the end of the previous section. Consistently this massless mode is r-

independent since, as was already discussed above, it comes from the r0-derivative of the

classical configuration ycl, which in turn is r-independent.

We now want to solve (4.4) with M > 0 for the entire range of x by gluing one

of the two solutions at x = 0 with the non-divergent solution at infinity. This is, of

course, possible only for discrete values of λn, which we found by means of the “shooting

technique”. Setting the even (δy(0) = 1, δy′(0) = 0) or the odd (δy(0) = 0, δy′(0) = 1)

boundary conditions at x = 0, we solved the equation numerically fixing λ by allowing only
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the normalisable (finite δy) solution for x ≫ 1. As we have already argued the even (odd)

initial conditions at x = 0 lead to even (odd) solutions of (4.6) and vice versa.

We found:

λPC
n = 4.20−−, 6.27++, 7.43−−, 9.53++, 10.53−−, 12.66++ . . . (4.7)

Before explaining the parity (P ) and charge conjugation (C) assignments let us analyse

the δθ(xν , z) field. The same procedure as for δy leads to:

∂x

((
1 + x2

)
∂xδθ

)
+

1

8

(
3

1 + x2
+ λ2 1 + x2/2

(1 + x2)5/4

)
δθ = 0. (4.8)

At infinity we have δθ ∼ 1/x or δθ ∼ 1, only the former of which is acceptable, while the

latter is now non-normalisable (see the last term in (4.4)). Near x = 0 we have δθ ∼ 1 or

δθ ∼ x exactly like for the δy field. Again, both solutions are convergent and give rise to

even and odd solutions respectively. For this field the spectrum is:

λPC
n = 2.01−+, 3.96+−, 5.28−+, 6.57+−, 7.86−+, 9.13+− . . . (4.9)

We can now compare these scalar meson spectra to the corresponding spectra of [11]

and [15]. We observe that in the latter two models there are scalar states with 0++ and

0−− whereas in our model there are states with all the four combinations of P and C. In

all models there are 0−− low lying meson states that do not occur in nature.

Let us now explain the parity and the charge conjugation properties of the modes.

Our analysis will be very similar to [11]. We can fix the 4d parities by requiring the 8d

action on the D7 branes to be C and P invariant. After KK reduction on S3 the 5d P -

parity transformation reads (xi, z) → (−xi,−z), while the charge conjugation implies both

z → −z and A → −A (or A → −AT in the non-Abelian case, see [11]). Since all the fields

appear quadratically in the DBI part we will not be able to determine the parities from

this part of the action. There is a non-trivial RR 4-form potential C4 in the background,

however, and so we have also two Chern-Simons (CS) terms in the action. Both terms do

not modify the spectrum calculation, since in the Abelian case they are at least cubic in the

field fluctuations, but nevertheless these terms reveal the parity and the charge conjugation

transformations of the fields. The first term is:
∫

F ∧ F ∧ C4, with C4 ∼ r4dx0 ∧ dx1 ∧ dx2 ∧ dx3. (4.10)

Here F is the gauge field strength on the brane.6 This term does not provide any new

insight, since it has no δθ or δy dependence. The second CS term is due to the Hodge dual

of C4, which by definition satisfies dC̃4 = ⋆10dC4. Up to a gauge transformation we have:

C̃4 ∼ cos θ dφ ∧ ω′
1 ∧ ω2′ ∧ ω3′, (4.11)

6To be precise in the Abelian case F ∧ F is a total derivative and so the term does not modify the

equations of motion. In the non-Abelian case we will have to replace F ∧ F by Tr(F ∧ F ).
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where w′
i are the SU(2) Maurer-Cartan forms we have introduced in section 3. This CS

term yields the following coupling in the 5d action:

∫
F ∧ F ∧ δθ(ycl + δy − z∂zδy)dz, (4.12)

where we kept only the two lowest terms in the perturbative expansion. We see that δy

should transform exactly like ycl, which is constant and so clearly both charge conjugation

and parity are even. On the other hand , δθ is C even and P odd. The 4d parities of the

δy and δθ modes depend on the solution choice in (4.6) and (4.8). For example, for even

solutions of (4.8) we get 0−+ modes, while odd solutions correspond to 0+− modes.

4.2 Vector mesons

Since in this paper we consider only a single probe brane, the first non-trivial contribution

in the F -expansion of the DBI action yields only the standard F ∧⋆F Abelian term. There

is also an F ∧F term coming from the C4 part of the Chern-Simons action, but this term is

a total derivative that does not modify the equations of motion. Because we are interested

only in the three-sphere independent modes we will ignore gauge fields with legs along the

S3 and will assume also that the remaining fields depend only on the coordinates z and

xν . The action then reduces to a 5d Maxwell action with a 5d background metric, which

we can find from (4.2) ignoring the S3 directions. The action is:

S = −T ′
∫

dx4dz
(
C(z)FµνFµν + 2D(z)FµzF

µ
z

)
, (4.13)

where we absorbed various numerical and dimensionful constants in T ′, the space-time

indices µ, ν are contracted with the Minkowskian metric and:

C(z) =
R4

(z2 + r8
0)

1/2
∝ √−g8 (gµν

8 )
2

and D(z) = 16(z2 + r8
0)

3/4 ∝ √−g8g
µν
8 gzz

8 . (4.14)

Here g8 stands for the 8d metric (4.2). Next we consider the following mode decomposition

of the fields:

Aµ(x, z) =
∑

n

an

µ(x)αn(z) and Az(x, z) =
∑

n

bn(x)βn(z). (4.15)

With this decomposition the field strength reads:

Fµν =
∑

n

fn

µν(x)αn(z) and Fµz =
∑

n

(
∂µbn(x)βn(z) − an

µ(x)∂zα
n(z)

)
, (4.16)

where fµν = ∂µaν − ∂νaµ. Substituting this back into the action (4.13) we receive:

S = −T ′
∫

dx4dz
∑

m,n

(
C(z)fn

µνf
nµναnαm + (4.17)

+2D(z)
(
∂µbn∂µbmβnβm + an

µamµ∂zα
n∂zα

m − 2∂µbnamµβn∂zα
m
))

.
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Following [11] we first consider the equation of motion and the normalization condition for

αn(z):

− 1

C(z)
∂z (D(z)∂zα

n(z)) = M2
n
αn(z) and T ′

∫ ∞

−∞
dzC(z)αn(z)αm(z) = δnm. (4.18)

Here the equation of motion is derived from the third term in (4.17), while the normalization

is dictated by the first term. Using both equations in (4.17) we get rid of the z-dependence

of the first and the third terms obtaining this way the standard 4d kinetic and mass term

for the gauge fields an
µ’s. We have meanwhile ignored the βν(z) modes. The reason for

that is the absence of a kinetic term for these modes. This means that we only have to

impose a right normalization for βn(z)’s. Remarkably, the following simple substitution:

βn(z) =
∂zα

n(z)

Mn

(4.19)

does the job. With the help of (4.18) the second term in (4.17) provides a standard kinetic

term ∂µbn∂µbn for the scalar fields bn’s, while the last term in (4.17) reduces to the form

−2∂µbnanµ. It turns out that both terms can be eliminated by the gauge transformation:

an

µ −→ an

µ +
∂µbn

Mn

. (4.20)

This seems to complete the analysis, meaning that there are no scalars in the final 4d

action, only the gauge fields an
µ. Yet there is a trap here: we just overlooked an additional

normalisable mode β0(z), which is orthogonal to all other modes βn(z) ∝ ∂zα
n(z) for all

n > 1 with respect to the scalar product defined by the second term in (4.17). This mode

is β0(z) = κ/D(z). We can easily check that:

∫ ∞

−∞
dzD(z)β0(z)βn(z) =

κ

Mn

∫ ∞

−∞
dz∂zα

n(z) = 0. (4.21)

The constant κ has to be fixed by the normalization of the mode β0(z):

1

κ2
= 4T ′

∫ ∞

−∞

dz

D(z)
. (4.22)

Plugging β0(z) into the action we find an additional scalar kinetic term ∂µb0∂µb0 that

cannot be eliminated by any gauge transformation. To summarise, we find that the 4d

action consists of the massive gauge fields αn
µ and the massless scalar b0:

S4d = −
∫

dx4


1

2
∂µb0∂µb0 +

∑

n>1

(
1

4
fµν
n fnµν +

1

2
M2

nan

µanµ

)
 . (4.23)

Following the discussion in Introduction we will identify b0 as the Goldstone boson of the

broken chiral symmetry. This implies that the we should anticipate this mode only for

r0 > 0, namely for the U -shape of two smoothly merging D7-branes, but not for r0 = 0

which corresponds to the V -shape of two separate branes. The answer to this puzzle is
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encoded in the convergence of the integral in (4.22). For r0 = 0 we have D(z) = 16 · z−3/2

and the integral (4.22) diverges at z = 0, so, as predicted, the massless mode does not exist

for the V -shape. On the other hand, the integral is finite for r0 > 0 as expected.

Our last goal in this section is to find the spectrum of the massive vector mesons. To

this end we have to solve the first equation in (4.18). Proceeding the same way like with

the scalar mesons we obtain the following results:

λn = 2.03++, 3.32−−, 4.71++, 6.05−−, 7.41++, 8.76−−, . . . (4.24)

Here the the parity and the charge conjugation properties are identified exactly like in the

Sakai-Sugimoto model [11]. In particular, the massless mode b0 is 0−+.

5. The dual gauge theory

In this section we will analyse the dual gauge theory. As we have already mentioned

in section 3 the Kähler quotient coordinates zi of the conifold correspond to the chiral

bi-fundamentals Ai and Bi in the quiver gauge theory. To be more specific, we have

u ∝ (A1, A2)
T and v⋆ ∝ (B1, B2)

T, see (3.12). In this paper we used X ∈ SU(2) and v to

parameterize the three- and the two-spheres of the conifold and our embedding looks like

two separate points on S2. The position of these points depends on the radial coordinate

for r0 > 0 (broken conformal and chiral symmetries) and is fixed for r0 = 0 (un-broken

symmetries).

For the embedding to be supersymmetric (namely to preserve four out of the eight

supercharges of the background) it has to be given by a holomorphic function [26] (see

also [27]). It is easy to check that for r0 > 0 the embedding is explicitly non-holomorphic.

Let us now address the r0 = 0 case. Since the conifold inherits the complex structure of C
4

we conclude that the r0 = 0 embedding is supersymmetric if and only if one has B1 = 0 or

B2 = 0 along the brane (which is the same as z3 = 0 or z4 = 0). This, however, describes

two antipodal points on the 2-sphere parameterized by v and we have demonstrated that

there is no such solution.7 Instead we found that the angle difference is
√

6
4 π. To conclude,

the embedding breaks supersymmetry for any r0.

The fact that there is no supersymmetric antipodal configuration matches, to some ex-

tent, the quiver gauge theory expectations. To see this, let us first consider the holomorphic

embedding studied in [3]. In terms of the bi-fundamentals it is given by:

A1B1 = µ (5.1)

and we will put µ = 0 for simplicity. In this case it is straightforward to find the quiver

diagram and the flavour part of the superpotential. The quiver of figure 3 and the additional

part in the superpotential is [3]:

∆W = q2B1q̃1 + q1A1q̃2. (5.2)

7 Recall that B1 = 0 and B2 = 0 correspond to v = (0, 1)T and v2 = (1, 0)T respectively. These points

are the north and the south poles of the 2-sphere described by v.
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Ai

Bi
SU(Nc)2SU(Nc)1

SU(Nf)

SU(Nf)

q2q̃1

q1 q̃2

Figure 3: The quiver diagram of the supersymmetric embedding elaborated in [3]. Here dots

denote the gauge groups and the boxes correspond to the global flavour symmetries. Notice that

there is no anomaly, as for each node the number of incoming and outgoing arrows are equal.

Higgsing the fields A1 and B1 one finds massive quarks, while the requirements for the

quarks to be massless leads to the A1B1 = 0 embedding (see [5, 3]).

Notice now that the same approach will not work for the B1B2 = 0 embedding, which

describes D7 and anti-D7 at the antipodal points on the two-sphere (see Footnote 7).

This is because in order to simultaneously include the terms q2B1q̃1 and q̃2B2q1 in the

superpotential we will have to invert the arrows of q̃2 and q1 in the diagram on figure 3.

This, however, will produce an anomalous quiver diagram, since the number of incoming

and outgoing arrows (for either node 1 or 2) will be different. We see that as expected we

cannot add flavours to the gauge theory in a way that will correspond to the antipodal

brane configuration.

We argued in section 3 that our D7-brane configuration breaks the Z2 symmetry. Recall

that this symmetry interchanges the gauge groups and so the quiver diagram on figure 3

is obviously Z2-invariant. This is in agreement with the definition of the embedding (5.1),

which is invariant under Ai ↔ Bi. So we may wonder whether this is the right diagram

for our embedding. For instance, we can consider a different quiver diagram presented on

figure 4, where the quarks interact only with one of the two gauge groups. Although this

diagram breaks the Z2 and seems to be a perfect candidate for our model, it does not allow

actually for any interaction between the quarks and the bi-fundamentals. Indeed, there are

only two possible interactions consistent with the quiver diagram. A term like8 q1L
Φq̄1L

,

8Since our setup is non-supersymmetric we write terms in the potential and not in the superpotential,

still using the same notations for the regular (bosonic and fermionic) fields as for the superfields.
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SU(Nc)1
Ai

Bi
SU(Nc)2

SU(Nf )R

SU(Nf )L

q1,R

q1,L

Figure 4: A quiver diagram that doesn’t respect the Z2 symmetry.

where Φ is an adjoint field of the form Φ = AiBj , is not Lorentz invariant, while a term

q1L
Φq1R

breaks chiral symmetry explicitly.

An additional possibility we may consider is the quiver diagram of [5, 7]. In this case,

the quarks and the anti-quarks of the same SU(Nf) couple to the same gauge group. Clearly

this is not the right diagram, since for any chiral symmetry breaking setup we need left

and right quarks with the same gauge group but with different flavour groups SU(Nf)L and

SU(Nf)R.

We propose therefore that figure 3 is the quiver diagram corresponding to our embed-

ding although it does not break the Z2 invariance. Of course, for our non-supersymmetric

model the arrows on the diagram are not related anymore to chiral superfields, but rather

to fermions (for q’s) and bosons (for Ai’s and Bi’s). We suggest that the Z2 breaking will

come from the explicit terms in the potential, which unfortunately we were not able to

find.

One may raise the question whether our model really describes chiral symmetry break-

ing, namely do we have Weyl or Dirac spinors for each one of the D7-branes. The chiral

symmetry breaking scenario can be realized only for the former case. Let us demonstrate

that this is indeed what we have. For µ = 0 the embedding (5.1) introduced in [3] de-

scribes two branches A1 = 0 and B1 = 0. Each branch describes an S3 on T 1,1. Unlike in

our setup, these three-spheres intersect along an S1 on the base of the conifold. Indeed,

plugging A1 = B1 = 0 into the D-term condition |A1|2 + |A2|2 − |B1|2 − |B2|2 = 0 we find

that |A2| = |B2|. Recall that we also have to quotient A2 and B2 by the U(1)K , and so

the intersection of A1 = 0 and B1 = 0 is a 2d cone parameterised by the gauge invariant

combination A2B2, which in turn means that on the 5d base T 1,1 the intersection looks like

S1. This is in contrast to our model where the two branches look like two non-intersecting

S3 with opposite orientations (we believe that for (5.1) the orientations of the spheres are

the same since the embedding is supersymmetric). Still, we can consider only the B1 = 0

branch of this holomorphic embedding. This branch looks exactly like one of the branes in
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our model. This brane alone is supersymmetric and we can assume that its contribution to

the superpotential is just the first term in (5.2). The chiral multiplets q̃1 and q2, however,

both have left Weyl fermions. The other branch of our configuration is an anti D7-brane,

since it has an opposite orientation and breaks supersymmetry. Thus it should have right

Weyl fermions instead. The contribution of these fermions to the potential should be simi-

lar to the potential term one can derive from the first term in (5.2). Instead of B1 this term

should include the field cos(α)B̄1 + sin(α)B̄2, where α =
√

6
2 π is the angle between the two

points on the 2-sphere corresponding to the brane and the anti-brane. The contribution

to the potential of the D7-brane and the anti D7-brane will preserve different supersym-

metries and so the entire setup will be non-supersymmetric. To summarise, our brane

and anti-brane have left and right fermions respectively and so the merging of the branes

indeed corresponds to chiral symmetry breaking. It will be very intersting to calculate the

potential of our model following the arguments above.

6. A model with no chiral symmetry breaking

In this section we will examine a different embedding originally proposed in [5] for the

deformed conifold. We focus on this embedding merely because similarly to our model it

preserves one SU(2) factor of the isometry group making the analysis much simpler. We

believe that on the same footing we could have studied an alternative embedding like, for

example, the one considered in [3] still arriving at the same conclusions.

We would like to demonstrate that the embedding of [5] does not look like a U -shape

configuration that smoothly merges into a single brane, which for a specific value of the

embedding parameter splits into a pair of two non-intersecting branes. In other words

this model does not possess any chiral symmetry breaking. We will then argue that the

vector meson spectrum in this case has no massless Goldstone boson in accordance with

the expectations.

The spectrum of the vector mesons has already been calculated in [5] for the deformed

conifold (the Klebanov-Strassler model [1]) and no massless modes have been found there.

Here we want to repeat the computation for the singular conifold (the Klebanov-Witten

model [18]) following the steps presented in the section 4.

The embedding we are interested in is:

z4 = µ, where W =

(
z3 + iz4 z1 − iz2

z1 + iz2 −z3 + iz4

)
(6.1)

is the matrix we used to define the conifold geometry. Since 2iz4 = TrW the profile (6.1)

preserves the diagonal SU(2)D isometry that acts like W → SDWS†
D.

In the zi coordinates the conifold definition det W = 0 reads:

4∑

i=1

z2
i = 0. (6.2)

From (6.2) we can understand the topology of the embedding. Let us first consider the

µ = 0 case. Substituting z4 = 0 into (6.2) and defining u = z1 + iz2, v = z1 − iz2 and

– 17 –



J
H
E
P
0
9
(
2
0
0
8
)
0
1
2

z = iz3 we obtain:

uv − z2 = 0, (6.3)

which is a definition of a 4d cone over the Lens space L(2; 1) = S3/Z2. We can arrive at

the same conclusion using the results of section 3. We see that for µ = 0 the matrix W

is traceless and so (3.3) implies that v†u = 0 and so up to the gauge transformation (3.4)

we have u = ǫv⋆ and so W = ρǫv⋆v†. The U(1)K gauge symmetry (3.4) is not broken

completely, because W is still invariant under v → −v. Recall that with no U(1)K quotient

v defines an S3, so the result of the Z2 orbifold is the aforementioned Lens space S3/Z2.

Next, for µ 6= 0 the zero in (6.3) is replaced by −µ2. This corresponds to the deformation

of the Z2 singularity.9 The Lens space L(2; 1) = S3/Z2 is an S1 fibration over S2 with

Chern class 2. For µ = 0 the Lens space shrinks to zero at the tip, but for non-zero µ only

the S1 fiber shrinks, while the S2 approaches a finite size controlled by µ. The shrinking of

the S1 cycle occurs when the radial coordinate ρ of the conifold reaches its minimal value

ρmin = 2µ along the brane.

To summarise, we saw that for µ = 0 at fixed radial coordinate the embedding looks

like the Lens space S3/Z2 and for µ 6= 0 the U(1) fiber of the Lens space shrinks at

ρ = ρmin, where the embedding looks like S2. Clearly the situation here does not resemble

our setup. There are no separate branches of the D7-brane for µ = 0 that merge into a

single configuration if we put µ 6= 0.

In order to analyse the vector meson spectrum we will need the 8d induced metric of

the embedding (6.1). For the deformed conifold this metric was found in [5]. To get the

induced metric for the un-deformed conifold we only have to take the ε → 0 limit, where ε

is the conifold deformation parameter. The calculation is quite simple and here we report

only the final result, referring the reader to [5] for further details. The induced metric is:

ds2
(8) =

r2

R2
dxµdxµ +

R2

r2
dr2

+R2

(
1

6

(
h2

1 + h2
2 + (h1 − ∂rγdr)2 + +(h3 sin γ + h2 cos γ)2

)

+
1

9

(
h3(1 + cos γ) − h2 sin γ

)2
)

. (6.4)

Here hi are the SU(2)D Maurer-Cartan forms and γ = γ(r) satisfies:

sin

(
γ(r)

2

)
=
(rmin

r

)3/2
with rmin =

31/2

21/6
µ2/3, (6.5)

where rmin is the minimal value of r along the brane. In particular, it follows from (6.5)

that for µ = 0 we get rmin = 0 and γ(r) = 0 for any r. In this case the metric is identical

to the metric in (3.9) for r0 = 0 and describes AdS5 × “S3” (see Footnote 5).

9Actually since the space defined by (6.3) is hyper-Kähler there is no way to distinguish between defor-

mation and resolution.
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We are now in a position to analyse the integral (4.22) for the embedding z4 = µ. As

was explained in details in section 4 the massless mode exists only if the integral in (4.22)

converges. Similar to (4.14) we have:

D̃(r) =
r3

18

(
cos2 γ + 8cos γ + 7

1 + 1
12r2(∂rγ)2

)1/2

∝ √−g8g
µν
8 grr

8 .

If µ = 0 then γ(r) = 0 and D̃(r) = 2
9r3. The integral (4.22) diverges and there is no

massless vector meson exactly like in the r0 = 0 case in our model. The integral, however,

diverges also for non-zero µ. To see this we have to find D̃(r) for r ≈ rmin. At this point

γ(rmin) = π. Defining δγ = γ − π and δr = r − rmin we find from (6.5) that:

δγ ≈ 2
√

3

(
δr

rmin

)1/2

. (6.6)

But then:

D̃(r) ≈ 2

3
r2
min · δr (6.7)

and the integral (4.22) diverges logarithmically. We therefore conclude that there is no

massless vector meson in the z4 = µ setup and so there is no chiral symmetry breaking in

this case.
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[7] F. Benini, F. Canoura, S. Cremonesi, C. Núñez and A.V. Ramallo, Backreacting flavors in

the Klebanov-Strassler background, JHEP 09 (2007) 109 [arXiv:0706.1238].

[8] F. Benini, A chiral cascade via backreacting D7-branes with flux, arXiv:0710.0374.

[9] F. Bigazzi, A.L. Cotrone and A. Paredes, Klebanov-Witten theory with massive dynamical

flavors, arXiv:0807.0298.

[10] H.-Y. Chen, P. Ouyang and G. Shiu, On supersymmetric D7-branes in the warped deformed

conifold, arXiv:0807.2428.

[11] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor.

Phys. 113 (2005) 843 [hep-th/0412141].

[12] T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114

(2005) 1083 [hep-th/0507073].

[13] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

[14] R. Casero, A. Paredes and J. Sonnenschein, Fundamental matter, meson spectroscopy and

non-critical string/gauge duality, JHEP 01 (2006) 127 [hep-th/0510110].

[15] O. Mintakevich and J. Sonnenschein, On the spectra of scalar mesons from HQCD models,

arXiv:0806.0152.

[16] S. Kuperstein and J. Sonnenschein, Non-critical supergravity (d > 1) and holography, JHEP

07 (2004) 049 [hep-th/0403254].

[17] S. Kuperstein and J. Sonnenschein, Non-critical, near extremal AdS6 background as a

holographic laboratory of four dimensional YM theory, JHEP 11 (2004) 026

[hep-th/0411009].

[18] I.R. Klebanov and E. Witten, Superconformal field theory on threebranes at a Calabi-Yau

singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080].

[19] O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and

chiral symmetry restoration, Ann. Phys. (NY) 322 (2007) 1420 [hep-th/0604161].

[20] A. Parnachev and D.A. Sahakyan, Chiral phase transition from string theory, Phys. Rev.

Lett. 97 (2006) 111601 [hep-th/0604173].

[21] K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of

mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195].

[22] J. Evslin and S. Kuperstein, Trivializing and orbifolding the conifold’s base, JHEP 04 (2007)

001 [hep-th/0702041].

[23] R. Minasian and D. Tsimpis, On the geometry of non-trivially embedded branes, Nucl. Phys.

B 572 (2000) 499 [hep-th/9911042].

[24] E.G. Gimon, L.A. Pando Zayas, J. Sonnenschein and M.J. Strassler, A soluble string theory

of hadrons, JHEP 05 (2003) 039 [hep-th/0212061].

[25] C. Krishnan and S. Kuperstein, The mesonic branch of the deformed conifold, JHEP 05

(2008) 072 [arXiv:0802.3674].

– 20 –

http://jhep.sissa.it/stdsearch?paper=02%282007%29090
http://arxiv.org/abs/hep-th/0612118
http://jhep.sissa.it/stdsearch?paper=09%282007%29109
http://arxiv.org/abs/0706.1238
http://arxiv.org/abs/0710.0374
http://arxiv.org/abs/0807.0298
http://arxiv.org/abs/0807.2428
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C113%2C843
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C113%2C843
http://arxiv.org/abs/hep-th/0412141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1083
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PTPKA%2C114%2C1083
http://arxiv.org/abs/hep-th/0507073
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://jhep.sissa.it/stdsearch?paper=01%282006%29127
http://arxiv.org/abs/hep-th/0510110
http://arxiv.org/abs/0806.0152
http://jhep.sissa.it/stdsearch?paper=07%282004%29049
http://jhep.sissa.it/stdsearch?paper=07%282004%29049
http://arxiv.org/abs/hep-th/0403254
http://jhep.sissa.it/stdsearch?paper=11%282004%29026
http://arxiv.org/abs/hep-th/0411009
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB536%2C199
http://arxiv.org/abs/hep-th/9807080
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C322%2C1420
http://arxiv.org/abs/hep-th/0604161
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C111601
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C111601
http://arxiv.org/abs/hep-th/0604173
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C106008
http://arxiv.org/abs/hep-th/0606195
http://jhep.sissa.it/stdsearch?paper=04%282007%29001
http://jhep.sissa.it/stdsearch?paper=04%282007%29001
http://arxiv.org/abs/hep-th/0702041
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB572%2C499
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB572%2C499
http://arxiv.org/abs/hep-th/9911042
http://jhep.sissa.it/stdsearch?paper=05%282003%29039
http://arxiv.org/abs/hep-th/0212061
http://jhep.sissa.it/stdsearch?paper=05%282008%29072
http://jhep.sissa.it/stdsearch?paper=05%282008%29072
http://arxiv.org/abs/0802.3674


J
H
E
P
0
9
(
2
0
0
8
)
0
1
2

[26] K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string

theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158].

[27] D. Arean, D.E. Crooks and A.V. Ramallo, The Supersymmetric probes on the conifold,

hep-th/0408210.

– 21 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB456%2C130
http://arxiv.org/abs/hep-th/9507158
http://arxiv.org/abs/hep-th/0408210

